

The Brampton Property Group Limited

Caernarfon Road, Bangor

Air Quality Assessment

MCP2161

The Brampton Property Group Limited

Caernarfon Road, Bangor

AIR QUALITY ASSESSMENT

Livery Place, 35 Livery Street, Colmore Business District, Birmingham, B3 2PB T: 0121 233 3322

14-16 High Street, Histon, Cambridge

CB24 9JD T: 01223 235 173

Whitehall Waterfront, 2 Riverside Way, Leeds

LS1 4EH

T: 0113 233 8000

11 Borough High Street T: 0207 407 3879

Manchester 11 Portland Street, Manchester, M1 3HU T: 0161 233 4260

Market Harborough

12a Woodcock House, Compass Point Market Harborough, Leicestershire, LE16 9HW T: 01858 455020

Nottingham

Waterfront House, Station Street, Nottingham NG2 3DQ

T: 0115 924 1100

February 2019

DOCUMENT ISSUE RECORD

Document Number:	CRB-BWB-ZZ-ZZ-RP-LA-0001_AQA_S0_P01
BWB Reference:	MCP2161-001

Revision	Date of Issue	Status	Author:	Checked:	Approved:
P01	20/02/2019	SO	E. Thomas BSc (Hons)	C. Meddings MSc, BSc (Hons), CSci, MIAQM, MIEnvSc	

Notice

This document has been prepared for the sole use of the Client in accordance with the terms of the appointment under which it was produced. BWB Consulting Limited accepts no responsibility for any use of or reliance on the contents of this document by any third party. No part of this document shall be copied or reproduced in any form without the prior written permission of BWB.

EXECUTIVE SUMMARY

BWB Consulting was appointed by The Brampton Property Group Limited to undertake an air quality assessment for a proposed foodstore at Caernarfon Road, Bangor.

The proposed development site is located within the administrative area of Gwynedd Council and lies adjacent to the A4087 Caernarfon Road. Gwynedd Council has not declared any Air Quality Management Areas within their administrative area.

A qualitative construction phase dust assessment was undertaken in accordance with Institute of Air Quality Management guidance and measures were recommended for inclusion in a Dust Management Plan to minimise emissions during construction activities. With the implementation of these mitigation measures the impact of construction phase dust emissions was considered to be 'not significant' in accordance with Institute of Air Quality Management guidance.

A detailed road traffic emissions assessment was undertaken to consider the impact of development-generated road traffic on local air quality at identified existing receptor locations. Road traffic emissions were modelled using the dispersion model ADMS-Roads and concentrations of nitrogen dioxide and particulate matter (PM_{10} and $PM_{2.5}$) were predicted at identified sensitive receptor locations. The modelling assessment was undertaken in accordance with Defra Local Air Quality Management Technical Guidance, Institute of Air Quality Management & Environmental Protection UK guidance.

CONTENTS

EXE	ECUTIVE SUMMARY	iii
1.	INTRODUCTION	6
	Appointment & Background	6
	Site Setting	6
	Proposed Development	6
2.	LEGISLATION AND PLANNING POLICY	8
	National Legislation and Planning Policy	8
	Local Planning Policy	10
3.	METHODOLOGY	11
	Consultation with Gwynedd Council	11
	Construction Phase Assessment	11
	Road Traffic Emissions – Air Dispersion Modelling	12
	Assessment Scenarios and Traffic Data	12
	ADMS-Roads Model Inputs	12
	Assessment Criteria	13
4.	BASELINE CONDITIONS	15
	Local Air Quality Management	15
	Local Air Quality Monitoring	15
	Particulate Matter (PM ₁₀ and PM _{2.5})	15
	Background Pollutant Concentrations	15
5.	Construction phase assessment	17
	Step 1: Screen the Need for a Detailed Assessment	17
	Step 2: Assess the Risk of Dust Impacts	17
	Step 3: Site-Specific Mitigation	20
	Step 4: Determine Significant Effects	20
6.	OPERATIONAL PHASE ROAD TRAFFIC EMISSIONS ASSESSMENT	21
	Existing Receptor Locations	21
	Baseline Assessment	23
	Impact Assessment	23
	Impact Significance Summary	26
7.	MITIGATION	27
	Construction Phase Assessment	27
	Operational Phase Road Traffic Emissions	30
8.	CONCLUSIONS	31

FIGURES

Figure 1.1: Site Location

Figure 6.1: Existing Receptor Locations

APPENDICES

APPENDIX A: Glossary of Terms

APPENDIX B: Proposed Development Drawings

APPENDIX C: Traffic Data Utilised in the Air Dispersion Modelling

APPENDIX D: Wind Rose

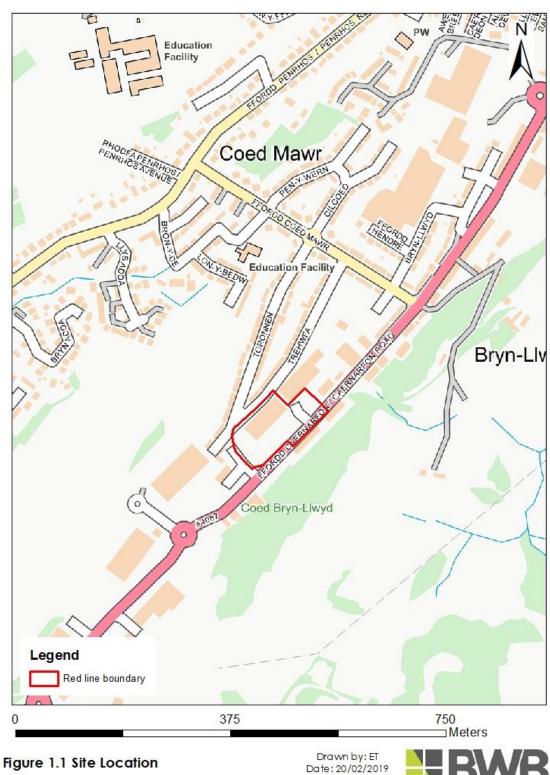
APPENDIX E: Model Verification APPENDIX F: Sensitivity Analysis

1. INTRODUCTION

Appointment & Background

- 1.1 BWB Consulting was appointed by The Brampton Property Group Limited to undertake an air quality assessment for a proposed foodstore on Caernarfon Road, Bangor ('the site').
- 1.2 The assessment considers construction phase dust impacts and operational phase road traffic emissions. A qualitative construction phase dust assessment was undertaken in accordance with relevant guidance. A detailed road traffic emissions assessment was undertaken to consider the impact of development-generated road traffic on local air quality at identified receptor locations.
- 1.3 This report is necessarily technical in nature, so to assist the reader, a glossary of air quality terminology can be found in **Appendix A.**

Site Setting


- 1.4 The site is located off the A4087 Caernarfon Road and is located within the administrative area of Gwynedd Council (GC). **Figure 1.1** details the location of the proposed development. The site currently comprises a vacant commercial building with car parking.
- 1.5 To the north of the site there are residential dwellings; to the east, south and west, there are commercial units with woodland and fields beyond, to the west there are also residential dwellings.
- 1.6 Principal air pollution sources in the vicinity of the development are likely to comprise road traffic emissions. The site is not within an Air Quality Management Area (AQMA), and GC has not declared any AQMAs within their administrative area.

Proposed Development

- 1.7 The proposed development comprises the demolition of the former cash and carry and erection of a foodstore (use class A1), car park, access and landscaping at former Blakemore Cash and Carry site; and reconfiguration of access and car park arrangements fronting the existing Dunelm store at Caernarfon Road, Bangor.
- 1.8 The proposed development masterplan is detailed in **Appendix B**.

Figure 1.1: Site Location

Contains Ordnance Survey data © Crown copyright and database right 2019

2. LEGISLATION AND PLANNING POLICY

National Legislation and Planning Policy

The UK Air Quality Strategy

- 2.1 European Union (EU) legislation forms the basis of air quality policy and legislation in the UK. The EU 2008 ambient Air Quality Directive¹ sets limits for ambient concentrations of air pollutants including nitrogen dioxide (NO₂) and particulate matter (PM₁₀ and PM_{2.5}). The air quality standards and objectives are prescribed through the Air Quality (Wales) Regulations 2010², as amended, for the purpose of the Local Air Quality Management Framework.
- 2.2 The UK Government are required under the Environment Act 1995³ to produce a national Air Quality Strategy (AQS). The AQS was first published in 1997⁴ and was most recently reviewed and updated in 2007⁵. The AQS provides an overview of the Government's ambient air quality policy and sets out the air quality standards and objectives to be achieved and measures to improve air quality.
- 2.3 Part IV of the Environment Act³ requires local authorities in the UK to review local air quality within their administrative area and, if relevant air quality standards and objectives are likely to be exceeded, designate Air Quality Management Areas (AQMAs). Following the designation of an AQMA, local authorities are required to publish an Air Quality Action Plan (AQAP) detailing measures to be taken to improve local air quality and work towards meeting the relevant air quality standards and objectives.

National Planning Policy for Wales

2.4 The National Planning Policy for Wales⁶ recognises air quality within Section 6.7 Air Quality and Soundscape and states:

"Framework for Addressing Air Quality and Soundscape

The planning system should maximise its contribution to achieving the well-being goals, and in particular a healthier Wales, by aiming to reduce average population exposure to air and noise pollution alongside action to tackle high pollution hotspots. In doing so, it should consider the long-term effects of current and predicted levels of air and noise pollution on individuals, society and the environment and identify and pursue any opportunities to reduce, or at least, minimise population exposure to air and noise pollution, and improve soundscapes, where it is practical and feasible to do so.

In taking forward these broad objectives the key planning policy principle is to consider the effects which proposed developments may have on air or soundscape quality and the effects which existing air or soundscape quality may have on proposed developments.

¹ European Parliament (2008) Council Directive 2008/50/EC on Ambient Air Quality and Cleaner Air for Europe

² HMSO (2010) Statutory Instrument 2010 No. 1433, The Air Quality (Wales) Regulations 2010 (as amended), London: HMSO

³ HMSO (1995) The Environment Act 1995, London: TSO

⁴ Department of the Environment (DoE) (1997) The UK National Air Quality Strategy, London: HMSO

⁵ Department of the Environment, Food and Rural Affairs (Defra) (2007) The Air Quality Strategy for England, Scotland, Wales and Northern Ireland, London:

⁶ Llywodraeth Cymru Welsh Government (2018) Planning Policy Wales Edition 10,

Air Quality and soundscape influence choice of location and distribution of development and it will be important to consider the relationship of proposed development to existing development and its surrounding area and its potential to exacerbate or create poor air quality or inappropriate soundscapes. The agent of change principle says that a business or person responsible for introducing a change is responsible for managing that change. In practice, for example, this means a developer would have to ensure that solutions to address air quality or noise from nearby pre-existing infrastructure, businesses or venues can be found and implemented as part of ensuring development is acceptable.

In proposing new development, planning authorities and developers must, therefore:

- Address any implication arising as a result of its association with, or location within, air quality management area, noise action planning priority areas or areas where there are sensitive receptors;
- Not create areas of poor air quality or inappropriate soundscape;
 and
- Seek to incorporate measures which reduce overall air and noise pollution and create appropriate soundscapes.

To assist decision making it will be important that the most appropriate level of information is provided and it may be necessary for a technical air quality and noise assessment to be undertaken by a suitably qualified and competent person on behalf of the developer.

Good design, for example setting back buildings from roads to avoid canyon effects and using best practice in terms of acoustic design to ensure the appropriate and intended acoustic environment of completed developments should be incorporated at an early consideration in the design and planning process. Other mitigation measures must be capable of being effectively implemented for their intended purpose, and could include those related to:

- traffic management and road safety;
- ensuring progress towards a shift to low or zero emissions means of road transport, such as electrical charging points;
- supporting low or zero emissions public transport;
- providing active travel infrastructure; and
- incorporating green infrastructure, where it can improve air quality by removing air pollution and aiding its dispersal, reduce real or perceived noise levels by absorbing and scattering noise and introducing natural sounds to soften man-made noise, provide areas of relative tranquillity, and reduce exposure by putting a buffer between sources of pollution and receptors.

[...]

Taking a sustainable approach will mean balancing short-term needs against longterm objectives to reduce public exposure to airborne pollution and giving

particular consideration to the presence of air quality management areas, noise action planning priority areas and areas with sensitive receptors when proposing new development and particularly when preparing development plans. It will be important to identify wider mitigation solutions to reduce air and noise pollution and to avoid exacerbating problems in existing air quality management areas or noise hotspots through the provision of green infrastructure identified as part of Green Infrastructure Assessments, by the provision of electric vehicle charging infrastructure or through promoting the need to consider effective design solutions. Planning Authorities should work closely with bodies such as the Public Service Boards in the preparation of their well-being plans and seek input from their own Environmental Health departments.

[...]"

Local Planning Policy

Anglesey and Gwynedd Joint Local Development Plan 2011 - 2026

2.5 GC adopted the Anglesey and Gwynedd Joint Local Development Plan 2011 - 2026⁷ in 2017, which sets out policies and proposals for the use and development of land and buildings.

"Policy PCYFF 2: Development Criteria

[...]

Additionally planning permission will be refused where the proposed development would have an unacceptable adverse impact on:

7. The healthy, safety or amenity of occupiers of local residences, other land and property uses or characteristics of the locality due to increased activity, disturbance, noise, dust, fumes, litter, drainage, light pollution, or other forms of pollution or nuisance;

[...]"

2.6 The above policies were taken into consideration throughout the undertaking of the assessment.

⁷ Isle of Anglesey County Council and Gwynedd Council (2017) Anglesey and Gwynedd Joint Local Development Plan 2011-2026

3. METHODOLOGY

Consultation with Gwynedd Council

- 3.1 Consultation was undertaken with the Public Protection Department at GC, in which the proposed assessment methodology was provided via email and a response was received with a telephone call on 12/02/20198.
- 3.2 The agreed assessment methodology is detailed below:
 - Construction Phase A construction phase assessment was undertaken and relevant measures to mitigate construction phase dust emissions were recommended. The assessment was undertaken in accordance with guidance provided by the Institute of Air Quality Management (IAQM)?
 - Operational Phase A detailed operational phase road traffic emissions assessment was undertaken to consider the impact of development-generated traffic on local air quality and predict pollutant concentrations at the proposed development site. The dispersion model ADMS-Roads was used to model concentrations of oxides of nitrogen (NOx) and particulate matter (PM₁₀ and PM_{2.5}) at identified existing receptor locations for both without and with development scenarios. The change in pollutant concentrations as a result of development-generated traffic was then calculated. The assessment was undertaken in accordance with Defra Local Air Quality Management Technical Guidance (LAQM.TG16)¹⁰ and Institute of Air Quality Management and Environmental Protection UK (EPUK)¹¹.
 - Full details of the methodology used in the assessment as agreed with GC is provided in paragraph 3.10 of this report.

Construction Phase Assessment

- 3.3 An assessment of the potential impacts arising from the construction of the proposed development was undertaken in accordance with IAQM Guidance⁹. The full assessment methodology is not reproduced within this report but a summary of the assessment steps are provided below:
 - Step 1 screen the requirement for a more detailed assessment. No assessment is required if there are no receptors within a certain distance of the works;
 - Step 2 assess the risk of dust impacts separately for each of the four activities considered (demolition, earthworks, construction and trackout).
 - Step 2A determine the potential dust emission magnitude for each of the four activities;
 - Step 2B determine the sensitivity of the area;
 - Step 2C determine the risk of dust impacts by combining the findings of steps 2A and 2B.
 - Step 3 determine the site-specific mitigation for each of the four activities; and

⁸ Consultation request issued to Gwynedd Council Public Protection Department on 24/01/2019 via email.

Consultation request issued to Gwyneda Council Public Profection Department on 24/01/2019 via email.
 Institute of Air Quality Management (2014) Guidance on the assessment of dust from demolition and construction, Institute of Air Quality Management, London.

¹⁰ Defra (2018) Local Air Quality Management Technical Guidance (LAQM.TG16), London: Defra

¹¹ Institute of Air Quality Management and Environmental Protection UK (2017) Land-Use Planning & Development Control: Planning for Air Quality, v1.2, London

• Step 4 – examine the residual effects and determine significance.

Road Traffic Emissions – Air Dispersion Modelling

- 3.4 The air dispersion model ADMS-Roads, version 4.1.1.0 was utilised in the assessment to predict concentrations of NOx, PM_{10} and $PM_{2.5}$ at existing and proposed receptor locations.
- 3.5 The assessment was undertaken in accordance with Defra Local Air Quality Management Technical Guidance¹⁰ and Institute of Air Quality Management and Environmental Protection UK guidance¹¹.

Assessment Scenarios and Traffic Data

- 3.6 The following scenarios were considered in the air dispersion modelling:
 - Scenario 1: 2017 Base Year;
 - Scenario 2: 2020 Opening Year 'without development'; and
 - Scenario 3: 2020 Opening Year 'with development'.
- 3.7 Traffic data were obtained from Connect Consultants, the Transport Consultants for the project. 24-hour Annual Average Daily Traffic Data (AADT) and Heavy Duty Vehicle (HDV) proportions were provided for the following roads for use in the assessment:
 - A4087 Caernarfon Road;
 - Fordd Coer Mawr:
 - Toronnen; and
 - Site access.
- 3.8 Consideration was given to the speeds at which vehicles are likely to travel within the study area. Free-flowing traffic conditions were modelled at the speed limit. Queuing sections, including the junction the A4087 Caernarfon Road and Fordd Coer Mawr were modelled in accordance with Defra guidance¹⁰.
- 3.9 Traffic data used in the air dispersion modelling are provided in **Appendix C.**

ADMS-Roads Model Inputs

- 3.10 The following model inputs were utilised in the assessment:
 - Emission Factors emission factors were utilised from the Defra Emission Factor Toolkit¹², version 8.0.1, for the years of assessment (2017 and 2020).
 - Conversion of oxides of nitrogen concentrations of NOx were predicted using the ADMS-Roads dispersion model. These concentrations were converted to nitrogen dioxide (NO₂) using the Defra NOx to NO₂ calculator¹³, version 6.1.
 - Meteorological Data hourly sequential meteorological data for the base year of assessment (2017) were obtained for the Rhyl recording station. This is not the closest

 $^{^{12}\,} De fra\,\, (2018)\, Emission\, Factor\, Toolkit\,\, [https://laqm.defra.gov.uk/review-and-assessment/tools/emissions-factors-toolkit.html]$

¹³ Defra (2018) NOx to NO₂ Calculator [https://laqm.defra.gov.uk/review-and-assessment/tools/background-maps.html#NOxNO2calc]

recording station to the proposed development site but it was agreed with GC that this is more representative of conditions at the site. The nearest recording stations are:

- Mona, Anglesey exposed to offshore winds and not representative of the site
- Valley, Anglesey exposed to offshore winds and not representative of the site
- Capel Curig, Snowdonia wind direction is affected by the Snowdonia mountain range and therefore not representative of the site
- The wind rose for the Rhyl recording station in 2017 is provided in **Appendix D**.
- Surface roughness a surface roughness of 0.5 was utilised in the dispersion model. This is representative of the open suburbia conditions of the study area.
- Monin-Obukhov length (MO) a MO of 30 was utilised in the dispersion model. This is representative of the typical town conditions of the study area.
- Background pollutant concentrations background concentrations of NO₂, PM₁₀ and PM2.5 for the study area were obtained from the pollutant concentrations maps¹⁴ provided by Defra as a 1km x 1km grid of the UK, for the years of assessment (2017 and 2020).
- Model verification model verification was undertaken using GC monitoring data available for the study area. Full details of the verification procedure are provided in Appendix E.
- Calculation of short term PM₁₀ concentrations the following calculation, as detailed in Defra guidance¹⁰, was utilised to calculate the number of exceedance of the 24-hour mean PM₁₀ air quality objective:

Number of 24-Hour Mean Exceedance = -18.5 + 0.00145 * Annual Mean³ + (206 / Annual Mean)

The IAQM released a position statement in July 2018¹⁵ regarding dealing with the uncertainty in vehicle NOx emissions within air quality assessments. This recommends that sensitivity analyses be undertaken and professional judgement be applied to consider the scenario where NOx emissions do not reduce as rapidly as shown by the EFT. As such a sensitivity analysis was undertaken and emission factors, NOx to NO₂ calculator inputs and background concentrations were kept at base year (2017) levels. Details of the sensitivity analysis are provided in **Appendix F**.

Assessment Criteria

Predicted pollutant concentrations were compared to the relevant air quality 3.11 objectives. The current relevant air quality standards and objectives are detailed in **Table 3.1.**

Table 3.1: Air Quality Standards and Objectives (Wales)

Pollutant	Averaging Period	Air Quality Objective (µg.m ⁻³)	Date to Achieve by
NO ₂	Annual Mean	40	31 December 2005

 ¹⁴ Defra (2018) background pollutant concentration maps [https://uk-air.defra.gov.uk/data/laqm-background-maps?year=2015]
 15 Institute of Air Quality Management (2018) Position Statement: Dealing with Uncertainty in Vehicle NOx Emissions within Air Quality Assessments, Version 1.1

Pollutant	Averaging Period	Air Quality Objective (µg.m ⁻³)	Date to Achieve by
	1-hour mean not to be exceeded more than 18 times per year	200	31 December 2005
	Annual Mean	40	31 December 2004
PM ₁₀	24-hour mean not to be exceeded more than 35 times per year	50	31 December 2004
PM _{2.5}	Annual mean	25	2010 - 2020

3.12 Guidance is provided by the Institute of Air Quality Management and Environmental Protection UK¹¹ to determine the significance of the impact of development-generated road traffic emissions on local air quality. The impact descriptors at receptor locations are detailed in **Table 3.2.** These impact descriptors consider the predicted magnitude of change in pollutant concentrations and the concentration in relation to the relevant air quality objectives.

Table 3.2: Impact Descriptors for Individual Receptors

Long Term Average	% Change in Concentration Relative to Air Quality Assessment Level (AQAL)					
Concentration at Receptor in Assessment Year	1%	2 – 5%	6 – 10%	>10%		
75% or less of AQAL	Negligible	Negligible	Slight	Moderate		
76 – 94% of AQAL	Negligible	Slight	Moderate	Moderate		
95 – 102% of AQAL	Slight	Moderate	Moderate	Substantial		
103 – 109% of AQAL	Moderate	Moderate	Substantial	Substantial		
110% or more of AQAL	Moderate	Substantial	Substantial	Substantial		

Note: Figures rounded up to the nearest whole number, therefore any value less than 1% after rounding (effectively less than 0.5%) will be described as negligible.

4. BASELINE CONDITIONS

Local Air Quality Management

4.1 The proposed development is not within an AQMA designation. GC has not declared any AQMAs within the local authority area.

Local Air Quality Monitoring

Nitrogen Dioxide

- 4.2 GC undertakes monitoring within its administrative boundary using a network of diffusion tubes. The closest monitoring location to the proposed development site is situated at 453 Caernarfon Road, Bangor (G8).
- 4.3 The bias adjusted NO₂ monitoring results for the G8 diffusion tube within the study area is detailed in **Table 4.1.** The tube was first deployed in January 2017.

Table 4.1: Gwynedd Council NO₂ Monitoring Data in 2017

Location	Grid Reference		Monitoring Site Type	Monitored Annual Average Concentration (µg.m ⁻³) 2017
453 Caernarfon Road, Bangor (G8)	256911	370613	Kerbside	23.3

Site type defined by the 2018 Air Quality Progress Report¹⁶, the tube is 2m from the nearest kerb and therefore can be considered as Roadside and suitable to use for verification.

4.4 The monitored annual mean NO₂ concentration in 2017, within the study area, was 'well below' the annual mean air quality objective of 40µg.m⁻³.

Particulate Matter (PM₁₀ and PM_{2.5})

4.5 There is currently no PM_{10} or $PM_{2.5}$ monitoring undertaken by GC within their administrative area.

Background Pollutant Concentrations

4.6 No background air quality monitoring is undertaken by GC within the study area. Background pollutant concentrations were therefore obtained from the latest Defra background concentration maps¹⁴, which are provided for the UK as a 1km x 1km grid network. The latest maps are based on 2015 monitoring and meteorological data. Background concentrations of NO₂, PM₁₀ and PM_{2.5} were obtained for the grid squares

¹⁶ North Wales Combined Authority (2018) 2018 Air Quality Progress Report

covering the study area for the years of assessment (2017 and 2020). The background concentrations used in the assessment are detailed in **Table 4.2**

Table 4.2: Background Pollutant Concentrations used in the Assessment

Dallistand	Crid Samona	Dogganton	Concentrat	ion (μg.m ⁻³)
Pollutant	Grid Square	Receptors	2017	2020
NO ₂		R1-R7	7.3	6.5
PM10	256500 370500		10.8	10.6
PM _{2.5}			7.4	7.2
NO ₂			6.5	5.9
PM10	257500 370500	R8	10.7	10.4
PM _{2.5}			7.2	7.0

4.7 2017 and 2020 background concentrations are below the relevant annual mean air quality objectives for NO_2 , PM_{10} and $PM_{2.5}$.

5. CONSTRUCTION PHASE ASSESSMENT

- 5.1 The construction phase of the proposed development will involve a number of activities which have the potential to impact on local air quality. These include emissions of dust generated through demolition, excavation, construction, earthworks and trackout activities, exhaust pollutant emissions from construction traffic on the local highways network, and exhaust emissions from non-road mobile machinery (NRMM) within the construction site itself.
- 5.2 The location of sensitive receptors in relation to construction activities will affect the potential for such construction activities to cause dust soiling, nuisance and local air quality impacts. Meteorological conditions and the use of control measures will also contribute to the effects experienced.

Step 1: Screen the Need for a Detailed Assessment

- 5.3 Step 1 of the IAQM guidance⁹ involves a screening assessment to consider whether a more detailed construction phase dust assessment is required.
- 5.4 In accordance with the guidance, a detailed assessment is required if:
 - Human receptors are located within 350m of the boundary of the site or 50m of routes used by construction vehicles on the public highways, up to 500m from the site entrances; or
 - Ecological receptors are located within 50m of the boundary of the site or 50m of routes used by construction vehicles on the public highways, up to 500m from the site entrances.
- 5.5 From a review of the Multi Agency Geographic Information for the Countryside (MAGIC) website¹⁷, no ecological designations were identified within 50m of the proposed development and therefore the impact on ecological designations was not considered further. However human receptors are located within 350m of the site boundary, with the closest of these receptors located off Trehwfa. A construction phase assessment was therefore undertaken.

Step 2: Assess the Risk of Dust Impacts

Step 2A: Define the Potential Dust Emission Magnitude

5.6 The dust emission magnitudes for the construction activities were defined using the criteria detailed in the IAQM guidance. The criteria and the dust emission magnitude defined for the proposed development are detailed in **Table 5.1**.

 $^{^{17}\,} De fra, Multi\, Agency\, Geographic\, Information\, for\, the\, Countryside\, (MAGIC)\, [http://magic.defra.gov.uk/]$

Table 5.1: Dust Emission Magnitude Criteria and Definition

Activity	IAQM Dust Emission Magnitude	IAQM Dust Emission Magnitude Criteria	Project Defined Dust Emission Magnitude		
	Large	>20m above around level.			
Demolition	Medium	Total building volume 20,000m³ – 50,000m³, potentially dusty construction material, demolition activities 10 - 20m above ground level.	Total building volume to be		
	Small	Total building volume <20,000m³, construction material with low potential for dust release (e.g. metal cladding or timber), demolition activities <10m above ground, demolition during wetter months.	demolished is less than 20,000m ³ .		
	Large	Total site area >10,000m², potentially dusty soil type (e.g. clay, which will be prone to suspension when dry due to small particle size), >10 heavy earth moving vehicles active at any one time, formation of bunds >8 m in height, total material moved >100,000 tonnes.	Medium:		
Earthworks	Medium	Total site area 2,500m ² – 10,000m ² , moderately dusty soil type (e.g. silt), 5 - 10 heavy earth moving vehicles active at any one time, formation of bunds 4m - 8m in height, total material moved 20,000 tonnes – 100,000 tonnes.	Total site area is between 2,500m ² – 10,000m ² .		
	Small	Total site area <2,500m ² , soil type with large grain size (e.g. sand), <5 heavy earth moving vehicles active at any one time, formation of bunds <4m in height, total material moved <20,000 tonnes, earthworks during wetter months.			
	Large	Total building volume >100,000m³, on site concrete batching, sandblasting.	Small: Total		
Construction	Medium	Total building volume 25,000m³ – 100,000m³, potentially dusty construction material (e.g. concrete), on site concrete batching.	building volume is less than		
	Small	Total building volume <25,000m³, construction material with low potential for dust release (e.g. metal cladding or timber).	25,000m ³ .		
	Large	>50 HDV (>3.5t) outward movements in any one day, potentially dusty surface material (e.g. high clay content), unpaved road length >100m.	Small: Less than 10		
Trackout	Medium	edium 10 - 50 HDV (>3.5t) outward movements in any one day, moderately dusty surface material (e.g. high clay content), unpaved road length 50m - 100m.			
	Small	<10 HDV (>3.5t) outward movements in any one day, surface material with low potential for dust release, unpaved road length <50m.	per day.		

Step 2B: Define the Sensitivity of the Area

5.7 The sensitivity of the study area takes into account the specific receptors in the vicinity of the site, the proximity and number of those receptors, the local background concentration of PM₁₀ and site-specific factors. The assessment requires the determination of the sensitivity of the area for the purposes of dust soiling, human health and ecological impacts and these are presented in **Table 5.2**.

Table 5.2: Determination of the Sensitivity of the Area

Potential	1155	Sensitivity			
Impact	Justification	Demolition	Earthworks	Construction	Trackout
Dust Soiling	There are 10-100 highly sensitive receptors within 20m of the proposed development.	High	High	High	High
Human Health	There are 10-100 highly sensitive receptors within 20m of the proposed development. The 2017 background concentration of PM ₁₀ is less than 24µg.m ⁻³ .	Low	Low	Low	Low

Step 2C: Define the Risk of Impacts

5.8 The dust emission magnitude determined in Step 2A is then combined with the sensitivity of the area determined in Step 2B to define the risk of dust impacts with no mitigation applied. The results of this assessment are detailed in **Table 5.2**.

Table 5.3: Summary Dust Risk Table to Define Site Specific Risk

Activity	Step 2A: Dust Emission Magnitude	Step 2B: Sensitivity of the Area	Step 2C: Risk of Dust Impacts				
Dust Soiling Effects on People and Property							
Demolition	Small	High	Medium Risk				
Earthworks	Medium	High	Medium Risk				
Construction	Small	High	Low Risk				
Trackout	Small	High	Low Risk				
Human Health Impacts	Human Health Impacts						

Activity	Step 2A: Dust Emission Magnitude	Step 2B: Sensitivity of the Area	Step 2C: Risk of Dust Impacts
Demolition	Small	Low	Negligible
Earthworks	Medium	Low	Low Risk
Construction	Small	Low	Negligible
Trackout	Small	Low	Negligible

Step 3: Site-Specific Mitigation

5.9 The risk of dust impacts defined in Step 2C is used to determine the measures required to mitigate construction phase dust impacts. The mitigation measures are detailed in **Section 7** of this report.

Step 4: Determine Significant Effects

5.10 In accordance with IAQM guidance, with the implementation of the mitigation measures detailed in **Section 7**, the residual impacts from the construction phase are considered to be 'not significant'.

6. OPERATIONAL PHASE ROAD TRAFFIC EMISSIONS ASSESSMENT

Existing Receptor Locations

- 6.1 Existing receptor locations were identified within close proximity of the road links detailed in paragraph 3.7 and considered in the operational phase road traffic emissions assessment. Concentrations of NO₂, PM₁₀ and PM_{2.5} were predicted at the identified existing receptor locations for the assessment scenarios detailed in paragraph 3.6. Where possible the closest receptors to those road links were considered, as these receptors are likely to experience the greatest change in pollutant concentrations as a result of the proposed development. Receptors heights were modelled at 1.5m with the exception of R2, which was modelled at 1.0m to account for situation of the residential dwelling at a height below road level.
- 6.2 The existing receptor locations are detailed in **Table 6.1** and **Figure 6.1**.

Table 6.1: Existing Sensitive Receptor Locations

December	Grid Reference		Detaile
Receptor	X	Y	Details
R1	256794	370540	Residential Dwelling on Caernarfon Road
R2	256913	370669	Residential Dwelling on Caernarfon Road
R3	256924	370643	Residential Dwelling on Caernarfon Road
R4	256972	370705	Residential Dwelling on Caernarfon Road
R5	256933	370695	Residential Dwelling on Caernarfon Road
R6	256852	370742	Residential Dwelling on Ffordd Coed Mawr
R7	256829	370725	Residential Dwelling on Ffordd Coed Mawr
R8	257062	370827	Residential Dwelling on Caernarfon Road

Figure 6.1: Existing Receptor Locations

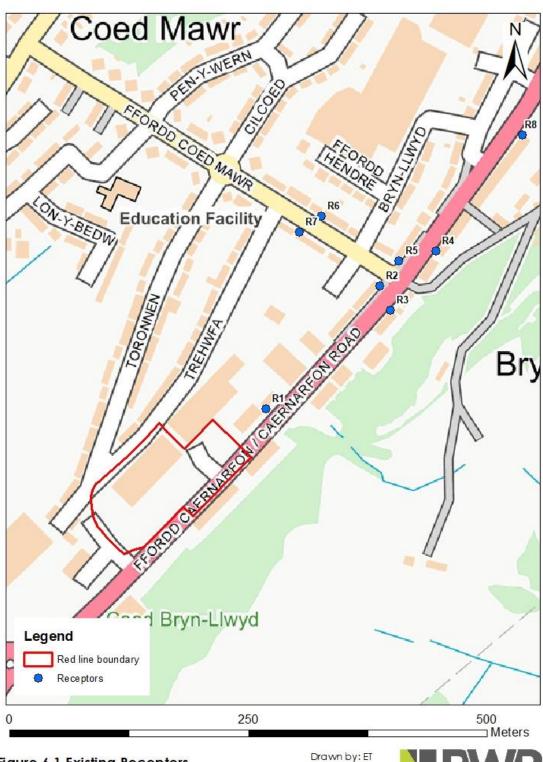


Figure 6.1 Existing Receptors

Contains Ordnance Survey data © Crown copyright and database right 2019

Date: 20/02/2019

Baseline Assessment

6.3 Pollutant concentrations were predicted at the identified existing sensitive receptor locations using the dispersion model ADMS-Roads. Predicted pollutant concentrations for Scenario 1: 2020 Base Year and Scenario 2: 2020 Opening Year 'without development' are detailed in **Table 6.3**.

Table 6.3: Predicted Annual Mean Pollutant Concentrations for Scenario 1: 2020 Base Year and Scenario 2: 2020 Opening Year Without Development at Existing Receptor Locations

Receptor	Scenario 1: 2017 Base Year (µg.m ⁻³)		Scenario 2: 2020 Opening Year Without Development (µg.m ⁻³)			
Receptor	NO ₂	PM10	PM _{2.5}	NO ₂	PM 10	PM _{2.5}
R1	20.2	13.2	8.8	17.5	13.0	8.5
R2	23.7	13.8	9.1	20.6	13.5	8.8
R3	23.2	13.8	9.1	20.2	13.5	8.8
R4	25.6	13.9	9.2	22.2	13.6	8.9
R5	24.3	13.7	9.0	21.1	13.4	8.7
R6	16.5	12.3	8.2	14.3	12.0	7.9
R7	11.9	11.6	7.8	10.4	11.3	7.6
R8	21.6	13.1	8.6	18.9	12.8	8.3

- 6.4 The baseline assessment for Scenario 1 and Scenario 2 indicates that predicted concentrations of NO_2 , PM_{10} and $PM_{2.5}$ are below the respective annual mean air quality objectives at receptors considered.
- With regard to short term air quality objectives for NO_2 and PM_{10} , the predicted annual mean NO_2 concentrations are less than $60\mu g.m^{-3}$ and therefore in accordance with Defra guidance 10 it may be assumed that exceedance of the 1-hour mean objective are unlikely. The calculation detailed in paragraph 3.10 was used to determine potential exceedance of the 24-hour PM_{10} short term objective; no exceedances were predicted.

Impact Assessment

Detailed Operational Phase Road Traffic Emissions Assessment

6.6 Concentrations of NO₂, PM₁₀ and PM_{2.5} were predicted at identified existing receptor locations for Scenario 3: 2020 Opening Year with development, to consider the impact of development-generated vehicles on local air quality.

6.7 Predicted pollutant concentrations are detailed in **Tables 6.4**, **6.5** and **6.6** for NO₂, PM₁₀ and PM_{2.5} respectively together with Scenario 2: 2020 Opening Year without development concentrations for comparison purposes. The predicted change in pollutant concentrations resulting from development-generated traffic, and the associated impact are also provided.

Table 6.4: Predicted Annual Mean NO₂ Concentrations and Development Impact at Existing Receptor Locations

	Predicted NO			
Receptor	Scenario 2: 2020 Without Development	Scenario 3: 2020 With Development	Change*	Impact
R1	17.5	17.8	+0.3	Negligible
R2	20.6	20.8	+0.3	Negligible
R3	20.2	20.4	+0.3	Negligible
R4	22.2	22.5	+0.3	Negligible
R5	21.1	21.3	+0.3	Negligible
R6	14.3	14.5	+0.1	Negligible
R7	10.4	10.5	+0.1	Negligible
R8	18.9	19.1	+0.2	Negligible

^{*} Discrepancies in change calculations are a result of rounding effects

Table 6.5: Predicted Annual Mean PM_{10} Concentrations and Development Impact at Existing Receptor Locations

	Predicted PM ₁₀ Concentrations (µg.m ⁻³)			
Receptor	Scenario 2: 2020 Without Development	Scenario 3: 2020 With Development	Change*	Impact
R1	13.0	13.0	+0.1	Negligible
R2	13.5	13.6	+0.1	Negligible
R3	13.5	13.6	+0.1	Negligible
R4	13.6	13.7	+0.1	Negligible

	Predicted PM ₁₀ Concentrations (μg.m ⁻³)			
Receptor	Scenario 2: 2020 Without Development	Scenario 3: 2020 With Development	Change*	Impact
R5	13.4	13.5	+0.1	Negligible
R6	12.0	12.0	0.0	Negligible
R7	11.3	11.3	0.0	Negligible
R8	12.8	12.9	0.0	Negligible

^{*} Discrepancies in change calculations are a result of rounding effects

Table 6.6: Predicted Annual Mean $PM_{2.5}$ Concentrations and Development Impact at Existing Receptor Locations

Dagamlar	Predicted F			
Receptor	Scenario 2: 2020 Without Development	Scenario 3: 2020 With Development	Change*	Impact
R1	8.5	8.5	0.0	Negligible
R2	8.8	8.8	0.0	Negligible
R3	8.8	8.8	0.0	Negligible
R4	8.9	8.9	0.0	Negligible
R5	8.7	8.8	0.0	Negligible
R6	7.9	8.0	0.0	Negligible
R7	7.6	7.6	0.0	Negligible
R8	8.3	8.4	0.0	Negligible

^{*} Discrepancies in change calculations are a result of rounding effects

- 6.8 The predicted NO₂, PM₁₀ and PM_{2.5} concentrations for Scenario 2: 2020 Opening Year without development and Scenario 3: 2020 Opening Year with development are below the relevant annual mean air quality objectives for all the receptors.
- 6.9 The proposed development does not lead to any exceedances of the annual mean air quality objectives.

- 6.10 Predicted changes in NO₂, PM₁₀ and PM_{2.5} concentrations are less than 0.5% of the relevant annual mean air quality objectives and therefore considered to be negligible in accordance with IAQM and EPUK guidance¹¹.
- 6.11 With regard to short term air quality objectives for PM_{10} at the existing receptor locations, the calculation detailed in paragraph 3.10 was used to determine potential exceedance of the 24-hour PM_{10} short term objective; no exceedances were predicted.

Impact Significance Summary

- 6.12 Relevant guidance and legislation and professional judgement was utilised to determine the significance of the air quality assessment. The air quality assessment was supervised by a full member of the Institute of Air Quality Management. A summary of the impact significance and justification of this are provided below.
- 6.13 The impact of the proposed development on air quality is considered to be 'negligible':
 - Consideration was given to local planning policy⁷ and the development proposals are considered to be in accordance with this policy with regard to air quality.
 - Existing concentrations of NO₂, PM₁₀ and PM_{2.5} in the study area are predicted to be below the relevant air quality objectives.
 - The air quality assessment undertaken utilised robust model inputs including slowing traffic sections at junctions, appropriate meteorological data and surface roughness and cumulative traffic flows.
 - The impact of development-generated road traffic on local air quality is defined as negligible in accordance with IAQM and EPUK guidance¹¹.
 - In addition, a sensitivity analysis was undertaken and provided in **Appendix F** considering the conservative scenario of NOx concentrations not decreasing from baseline levels in line with projected emission factors. The findings of this sensitivity analysis also predict the impact of development-generated road traffic on local air quality as negligible in accordance with IAQM and EPUK guidance¹¹.

7. MITIGATION

Construction Phase Assessment

Step 3: Site-specific Mitigation

7.1 The risk of dust impacts, defined in Step 2C of the assessment, are used to determine the mitigation measures required to minimise the emission of dust during construction phase activities. The IAQM guidance⁹ provides details of highly recommended and desirable mitigation measures which are commensurate with the risk of dust impacts defined in Step 2C for construction, earthworks and trackout activities. Where the mitigation measures are general in nature, the highest risk category was applied in accordance with the guidance⁹. The highest risk category identified was 'Medium Risk' and the recommended mitigation taken from the IAQM guidance⁹ is detailed in **Table 7.1** and **Table 7.2**.

Table 7.1: Mitigation Measures for a Medium Risk Site

Carlo mami	Mitigation A	Neasures
Category	Highly Recommended	Desirable
Communication	Develop and implement a stakeholder communications plan that includes community engagement before work commences on site.	
	Display the name and contact details of person(s) accountable for air quality and dust issues on the site boundary. This may be the environmental manager/engineer or the site manager.	None
	Display the head or regional office contact information.	
	Develop and implement a Dust Management Plan (DMP), which may include measures to control other emissions, approved by the Local Authority.	
	Record all dust and air quality complaints, identify cause(s), take appropriate measures to reduce emissions in a timely manner and record the measures taken.	
Site Management	Make the complaints log available to the local authority when asked.	None
	Record any exceptional incidents that cause and/or air emissions, either on- or off-site, and the action taken to resolve the situation in the log book.	

	Mitigation Measures			
Category	Highly Recommended	Desirable		
	Carry out regular site inspections to monitor compliance with the DMP, record inspections results, and make an inspection log available to the local authority when asked.	Undertake daily on-site and off- site inspection, where receptors (including roads) are nearby, to monitor dust, record inspection results, and make the log		
Monitoring	Increase the frequency of site inspections by the person accountable for air quality and dust issues on site when activities with a high potential to produce dust are being carried out and during prolonged dry or windy conditions.	available to the local authority when asked. This should include regular dust soiling checks of surfaces such as street furniture, cars and window sills within 100m of the site boundary, with cleaning to be provided as necessary.		
	Plan the site layout so that machinery and dust causing activities are located away from receptors, as far as is possible.			
	The site should be suitably enclosed with solid hoarding.			
	Fully enclose site or specific operations where there is a high potential for dust production and the site is active for an extended period.			
Preparing and maintaining the site	Avoid site runoff of water or mud.	None		
	Keep site fencing, barriers and scaffolding clean using wet methods.			
	Remove materials that have a potential to produce dust from site as soon as possible. Unless being reused on site. If they are being re-used on-site cover as described below.			
	Cover, seed or fence stockpiles to prevent wind whipping.			
Operating vehicle/ machinery and sustainable travel	Ensure all vehicles switch off engines when stationary – no idling vehicles.	Impose and signpost a maximum- speed-limit of 15 mph on surfaced and 10 mph on un- surfaced haul roads and work areas (if long haul routes are		
	Avoid the use of diesel or petrol powered generators and use mains electricity or battery powered equipment where practicable.	required these speeds may be increased with suitable control measures provided, subject to the approval of the nominated undertaker with the agreement of the local authority, where appropriate).		
	Produce a Construction Logistics Plan to manage the sustainable delivery of goods and materials.	Implement an operational phase Travel Plan that supports and encourages sustainable travel		

Carlo mami	Mitigation Measures			
Category	Highly Recommended	Desirable		
		(public transport, cycling, walking, and car-sharing).		
	Only use cutting, grinding or sawing equipment fitted or in conjunction with suitable dust suppression techniques such as water sprays or local extraction, e.g. suitable local exhaust ventilation systems.			
	Ensure an adequate water supply on site for effective dust/particulate matter suppression/mitigation, using non-portable water where possible and appropriate.			
Operations	Use enclose chutes and conveyors and covered skips.	None		
	Minimise drop heights from conveyors, loading shovels, hoppers and other loading or handling equipment and use fine water sprays on such equipment wherever appropriate.			
	Ensure equipment is readily available on site to clean and dry spillages, and clean up spillages as soon as reasonably practicable after the event using wet cleaning methods.			
Waste Management	Avoid bonfires and burning of waste materials.	None		

Table 7.2: Mitigation Measures Specific to Demolition, Earthworks, Construction and Trackout

Catogoni	Mitigation Measures			
Category	Highly Recommended	Desirable		
Demolition (Medium Risk Site)	Ensure effective water suppression is used during demolition operations. Hand held sprays are more effective than hoses attached to equipment as the water can be directed to where it is needed. In addition high volume water suppression systems, manually controlled, can produce fine water droplets that effectively bring the dust particles to the ground. Avoid explosive blasting, using appropriate manual or mechanical	Soft strip inside buildings before demolition (retaining walls and windows in the rest of the building where possible, to provide a screen against dust).		

	Mitigation Measures			
Category	Highly Recommended	Desirable		
	Bag and remove any biological debris or damp down such material before demolition.			
Earthworks (Medium Risk Site)	None	Re-vegetate earthworks and exposed areas/soil stockpiles to stabilise surfaces as soon as practicable. Use Hessian, mulches or tackifiers where it is not possible to revegetate or cover with topsoil, as soon as practicable. Only remove the cover in small areas during work and not all at once.		
Construction (Low Risk Site)	None	Avoid scabbling (roughening of concrete surfaces) if possible. Ensure sand and other aggregates are stored in bunded areas and are not allowed to dry out, unless this is required for a particular process, in which case ensure that appropriate additional control measures are in place.		
		Use water-assisted dust sweeper(s) on the access and local roads, to remove, as necessary, any materials tracked out of the site. This may require the sweeper being continuously in use.		
		Avoid dry sweeping of large areas.		
Trackout (Low Risk Site)	None	Ensure vehicles entering and leaving the sites are covered to prevent escape of materials during transport.		
		Record all inspections of haul routes and any subsequent action in a site log book.		
		Implement a wheel washing system (with rumble grids to dislodge accumulated dust and mud prior to leaving the site where reasonably practicable).		

Operational Phase Road Traffic Emissions

7.2 The development will result in minimal increases in pollutant concentrations and no new exceedances of the relevant air quality objectives are predicted. No mitigation measures are therefore required to minimise development-generated road traffic emissions.

8. CONCLUSIONS

- 8.1 An air quality impact assessment was undertaken for the proposed foodstore on Caernarfon Road in Bangor.
- 8.2 A qualitative construction phase assessment was undertaken and measures were recommended for inclusion in a DMP to minimise emissions during construction activities. With the implementation of these mitigation measures the impact of construction phase dust emissions is considered to be 'not significant' in accordance with IAQM guidance.
- 8.3 A detailed road traffic emissions assessment was undertaken to consider the impact of development-generated road traffic on local air quality at identified existing receptor locations. Road traffic emissions were modelled using the dispersion model ADMS-Roads and concentrations of NO₂, PM₁₀ and PM_{2.5} were predicted at identified sensitive receptor locations. The modelling assessment was undertaken in accordance with Defra Local Air Quality Management Technical Guidance¹⁰. The development was not predicted to result in any exceedances of the relevant air quality objectives and the impact of the development on local air quality was predicted to be 'negligible' in accordance with IAQM and EPUK guidance¹¹.

CAERNARFON ROAD, BANGOR AIR QUALITY ASSESSMENT FEBRURY 2019 MCP2161

APPENDICES

CAERNARFON ROAD, BANGOR AIR QUALITY ASSESSMENT FEBRURY 2019 MCP2161

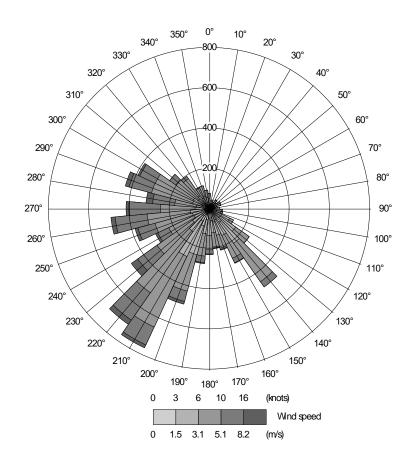
APPENDIX A: GLOSSARY OF TERMS

Term	Definition
Air quality objective	Policy target generally expressed as a maximum ambient concentration to be achieved, either without exception or with a permitted number of exceedances within a specific timescale (see also air quality standard).
Air quality standard	The concentrations of pollutants in the atmosphere which can broadly be taken to achieve a certain level of environmental quality. The standards are based on the assessment of the effects of each pollutant on human health including the effects on sensitive sub groups (see also air quality objective).
Annual mean	The average (mean) of the concentrations measured for each pollutant for one year. Usually this is for a calendar year, but some species are reported for the period April to March, known as a pollution year. This period avoids splitting winter season between two years, which is useful for pollutants that have higher concentrations during the winter months.
AQAP	Air Quality Action Plan.
AQMA	Air Quality Management Area.
AQS	Air Quality Strategy.
Defra	Department for Environment, Food and Rural Affairs.
Exceedance	A period of time where the concentrations of a pollutant is greater than, or equal to, the appropriate air quality standard.
HDV	Heavy Duty Vehicles, (HGVs + buses)
HGV	Heavy Goods Vehicles.
IAQM	Institute of Air Quality Management.
LAQM	Local Air Quality Management.
LDV	Light Duty Vehicles (motorbikes, cars, vans and small trucks)
NO	Nitrogen monoxide, a.k.a. nitric oxide.
NO ₂	Nitrogen dioxide.
NOx	Nitrogen oxides.
O ₃	Ozone.
Percentile	The percentage of results below a given value.
PM ₁₀	Particulate matter with an aerodynamic diameter of less than 10 micrometres.
PM _{2.5}	Particulate matter with an aerodynamic diameter of less than 2.5 micrometres.
micrograms per cubic metre (µg.m ⁻³)	A measure of concentration in terms of mass per unit volume. A concentration of $1\mu g.m^{-3}$ means that one cubic metre of air contains one microgram (millionth of a gram) of pollutant.
UK-AIR	UK Air Information Resource – A source of air quality information provided by Defra.
UKAQS	United Kingdom Air Quality Strategy.

APPENDIX B: PROPOSED DEVELOPMENT MASTERPLAN

APPENDIX C: TRAFFIC DATA UTILISED IN THE AIR QUALITY ASSESSMENT

Traffic Data Utilised in the Air Dispersion Modelling Assessment


Road Link	Speed	Scenario 1: 2017 Base/Verification Year		Scenario 2: 2020 Opening Year without development		Scenario 3: 2020 Opening Year without development	
	kph	24 hour AADT Total Flow	HDV Flow	24 hour AADT Total Flow	HDV Flow	24 hour AADT Total Flow	HDV Flow
Site Access	32	724	0	752	0	2237	0
A4087 Caernarfon Road (South)	64	17,481	323	18,153	336	18,683	338
A4087 Caernarfon Road (North)	64	17,258	321	17,921	333	18,286	336
Fordd Coed Mawr	32	4610	78	4,787	81	4,852	82
Toronnen	48	320	14	332	14	338	20
A4087 Caernarfon Road (Far North)	48	14,955	267	15,529	278	15,829	280

APPENDIX D: WIND ROSE FOR 2017 FOR RHYL METEOROLOGICAL RECORDING STATION

Meteorological data for 2017 Base Year scenario for the Rhyl recording station was obtained for use in the air dispersion modelling assessment. The wind rose for 2017 is detailed below and illustrates a predominant wind direction from the south west.

CAERNARFON ROAD, BANGOR AIR QUALITY ASSESSMENT FEBRURY 2019 MCP2161

APPENDIX E: MODEL VERIFICATION

Whilst ADMS-Roads is widely validated for use in this type of assessment, model verification for the area around the site will not have been included. To determine model performance at a local level, a comparison of modelled results with monitored results in the study area was done in accordance with the methodology provided by Defra¹⁰. This process of verification aims to minimise modelling uncertainty by correcting modelled results by an adjustment factor to give greater confidence to the results.

The model was run for Scenario 1: 2017 Verification Year to predict the 2017 annual mean road contributions of NOx and PM_{10} at the monitoring locations in the study area. The model NOx outputs at this location were compared to the 2017 monitored concentrations to provide adjustment factors. **Table E1** presents the verification process for NOx.

No monitoring of PM_{10} or $PM_{2.5}$ is undertaken within the study area. Therefore the adjustment factor calculated during the NO_2 verification process was utilised to adjust predicted concentrations of PM_{10} and $PM_{2.5}$.

Table E1: NOx Verification Process

Model Verification Steps	G8 - 453 Caernarfon Road, Bangor
2017 monitored total NO ₂ (µg.m ⁻³)	23.3
2017 background NO ₂ concentration (µg.m ⁻³)	7.3
Monitored road contribution NOx (µg.m ⁻³)	30.4
Modelled road contribution NOx (µg.m ⁻³)	8.2
Ratio of monitored road NOx to modelled road NOx	3.7
Adjustment factor for modelled road contribution NOx	3.7257
Adjusted modelled road contribution NOx (µg.m ⁻³)	30.4
Modelled total NO ₂ concentration (µg.m ⁻³)	23.3
Monitored total NO ₂ concentration (µg.m ⁻³)	23.3
% difference between modelled and monitored total NO ₂ concentration	0

^{*} Road-NOx component, determined from NOx to NO2 calculator

A road-NOx factor of **3.7257** was determined as the slope of the best fit line between the 'measured' road contribution and the model derived road contribution, forced through zero. This factor was then applied to the modelled road-NOx concentration at each receptor, before conversion to NO_2 concentrations using the NO_x to NO_2 calculator provided by Defra and the adjusted NO_2 background concentration.

CAERNARFON ROAD, BANGOR AIR QUALITY ASSESSMENT FEBRURY 2019 MCP2161

APPENDIX F: SENSITIVITY ANALYSIS

SENSITIVITY ANALYSIS

A sensitivity analysis was undertaken to consider a scenario where pollutant background concentrations do not decrease with future years. Therefore base year (2017) background concentrations, NOx to NO₂ calculator inputs and emission factors were utilised for the 2020 Opening Year with development and the 2020 Opening Year without development scenario. The results of the assessment for the existing receptor locations identified are provided in **Tables F1 – F4**.

Table F1: Predicted Annual Mean NO₂ Concentrations and Development Impact at Existing Receptor Locations

	Predict			
Existing Receptor	Scenario 2: 2020 Without Development	Scenario 3: 2020 With Development	Change*	Impact
R1	20.7	21.0	+0.3	Negligible
R2	24.3	24.6	+0.3	Negligible
R3	23.8	24.1	+0.3	Negligible
R4	26.3	26.6	+0.3	Negligible
R5	24.9	25.2	+0.3	Negligible
R6	16.8	17.0	+0.1	Negligible
R7	12.1	12.2	+0.1	Negligible
R8	22.2	22.5	+0.3	Negligible

^{*} Discrepancies in change calculations are a result of rounding effects

Table F2: Predicted Annual Mean PM₁₀ Concentrations and Development Impact at Existing Receptor Locations

	Predict				
Receptor	Scenario 2: 2020 Without Development	Scenario 3: 2020 With Development	Change*	Impact	
R1	13.3	13.4	+0.1	Negligible	
R2	13.9	14.0	+0.1	Negligible	
R3	13.9	14.0	+0.1	Negligible	

	Predict			
Receptor	Scenario 2: 2020 Without Development	Scenario 3: 2020 With Development	Change*	Impact
R4	14.0	14.1	+0.1	Negligible
R5	13.8	13.9	+0.1	Negligible
R6	12.3	12.3	0.0	Negligible
R7	11.6	11.6	0.0	Negligible
R8	13.2	13.2	0.0	Negligible

^{*} Discrepancies in change calculations are a result of rounding effects

Table F3: Predicted Annual Mean PM_{2.5} Concentrations and Development Impact at Existing Receptor Locations

Receptor	Predicted P <i>N</i>			
	Scenario 2: 2020 Without Development	Scenario 3: 2020 With Development	Change*	Impact
R1	8.8	8.8	0.0	Negligible
R2	9.2	9.2	0.0	Negligible
R3	9.1	9.2	0.0	Negligible
R4	9.2	9.3	0.0	Negligible
R5	9.1	9.1	0.0	Negligible
R6	8.2	8.3	0.0	Negligible
R7	7.8	7.8	0.0	Negligible
R8	8.7	8.7	0.0	Negligible

^{*} Discrepancies in change calculations are a result of rounding effects

The predicted NO₂, PM₁₀ and PM_{2.5} concentrations for Scenario 2: 2020 Opening Year without development and Scenario 3: 2020 Opening Year with development are below the relevant annual mean air quality objectives at all receptors.

With regard to short term air quality objectives for NO_2 and PM_{10} at the development, the predicted annual mean NO_2 concentrations are less than $60\mu g.m^{-3}$ and therefore in

CAERNARFON ROAD, BANGOR AIR QUALITY ASSESSMENT FEBRURY 2019 MCP2161

accordance with Defra guidance 10 it may be assumed that exceedances of the 1-hour mean objective are unlikely. The calculation detailed in paragraph 3.10 was used to determine potential exceedance of the 24-hour PM_{10} short term objective; no exceedances were predicted.

No mitigation is therefore required to minimise road traffic emissions from the development and the Site is considered to be suitable for the proposed commercial use with regard to air quality.

